(Phys.org) — A team made up of researchers from the Korean Gwangju Institute of Science and Technology, Seoul University and Rice University in the United States have created a flexible test substrate with embedded single molecule thick electronic components that is able to withstand torturous contortions that would destroy any other electronic devices…
New patterning technique produces faithful reproduction of grayscale images down to micrometer level
– phys.org
In his 1959 lecture There’s Plenty of Room at the Bottom, the US physicist Richard Feynman asked the question: “Why cannot we write the entire 24 volumes of the Encyclopaedia Britannica on the head of a pin?” Since then, scientists have made great advances in the nascent field of nanotechnology — and among them, the reading and writing of features at the atomic scale.
Researchers at MIT have found a new way of making complex three-dimensional structures using self-assembling polymer materials that form tiny wires and junctions. The work has the potential to usher in a new generation of microchips and other devices made up of submicroscopic features.
(Phys.org) — Dr. Balaji Sitharaman, PhD, an Assistant Professor in the Department of Biomedical Engineering at Stony Brook University, and a team of researchers developed a new, highly efficacious, potentially safer and more cost effective nanoparticle-based MRI (magnetic resonance imaging) contrast agent for improved disease diagnosis and detection.
Gold is usually thought of as being a shiny metal — however, in its porous form, gold actually appears dull and black. The surfaces of nanoporous gold are rough and the metal loses its shine. Michel Bosman at the A*STAR Institute of Materials Research and Engineering and co-workers have now experimentally demonstrated that the dullness is a consequence of the way incoming light couples to the electrons on the gold surface.
Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires
– phys.org
A research team at Case Western Reserve University has found that gold catalysts shaped in the form of a cube, triangle, or other higher order structures grow nanowires about twice as fast and twice as long compared to wires grown with the more typical spherically-shaped catalysts.
(Phys.org) — Many organic contaminants in the air and in drinking water need to be detected at very low-level concentrations. Research published by the laboratory of Prashant V. Kamat, the John A. Zahm Professor of Science at the University of Notre Dame, could be beneficial in detecting those contaminants.